
LATEX TikZposter

Safe Sessions for Erlang

Adrián Palacios
MiST, DSIC, Universitat Politècnica de València

Safe Sessions for Erlang

Adrián Palacios
MiST, DSIC, Universitat Politècnica de València

Introduction

Erlang systems have become an example of fault-tolerant sys-
tems thanks to the Let It Crash philosophy.

Let It Crash

The Let It Crash philosophy discourages excessive error
handling in programs, and its advice is to let processes crash
in case of error and quickly restart them afterwards.

This is possible by building a process supervision tree where:

•Workers: Do all the hard work

•Supervisors: Restart workers if they crash

But supervisors do not make any verification when restarting
workers. That can lead to an inconsistent system state.

We propose safe sessions, an automatic recovery strategy
for Erlang, as a complement to the Let It Crash philosophy

In safe sessions, concurrent actions are registered, and the sys-
tem can return to a safe state in case of error.

This work is based on the reversible semantics for Erlang
from Nishida, Palacios and Vidal (LOPSTR’16).

Scan QR code to download this poster!

The language

The Erlang language:

• functional and concurrent features

• concurrency based on the actor model

Some companies that use Erlang in their production system

Concurrent Actions

Spawn: Create a new process

Send: Send a message to another process

Receive: Suspend execution until a message from the
mailbox matches any of the receive clauses

An example of Erlang computation where the client process
sends a request to the proxy process, which forwards this
request to the server process, is shown here:

Safe Sessions

We add a new construct to our language:

safetry expr end

Before the evaluation of expr, we store a snapshot of the pro-
cess state. If the evaluation of expr goes wrong, the process
is restored with the information available in the snapshot.

Causal Consistency

An action may be undone only if every action caused by that
action has not been executed yet or has been undone

Restoring the state is not enough to ensure causal consistency,
we must also undo the effects of its spawn and send actions.
This is solved by “propagating the safety” to other processes.

Safe sessions are implemented using:

•Monitors:

– Intercept incoming and outgoing messages

– Send signals between themselves to propagate the safety

• Instrumentation:

–Enable interaction of processes with their monitors

Instrumentation is performed by the auxiliary function [[]] as

Program Instrumentation

[[safetry expr end]]M → M ! 〈start session〉,
[[expr]]M ,

M ! 〈end session〉

[[spawn(. . .)]]M → M ! 〈spawn(. . .)〉,
receive 〈spawn with, P 〉 → P end

[[self()]]M → M

[[Pid ! expr]]M → M ! 〈send(Pid), [[expr]]M〉,
receive 〈sent as, E〉 → E end

[[receive clauses end]]M → M ! 〈receive, clauses〉,
Arg = receive

〈rec msg,Msg〉 →Msg end,

case Arg of [[clauses]]M end

Basically, concurrent actions are replaced by queries to the monitor.

Example

Related Work

Field and Varela (POPL’05) checkpoint-based approach has
some similarities with our proposal, although they aim at defining
a new language (rather than extending an existing one).

Neykova and Yoshida (CC’17) define an interprocedural re-
covery strategy based on session types which determines the pro-
cesses to be restarted in case of error. Our proposal is more
fine-grained, and it would allow us to define an intraprocedural
recovery strategy in addition to the interprocedural one.

Conclusions

We have presented the basic aspects of an automatic
technique for recovery in Erlang systems.

In the future, we will:

• refine our design of safe sessions

• develop an implementation

• compare our implementation against other ap-
proaches

