
Submission to PLDI 2017 Student Research Competition, Graduate Category

Safe Sessions for Erlang

Adrián Palacios
ACM member 3580926

Research advisor: Germán Vidal

MiST, DSIC, Universitat Politècnica de València
Camino de Vera, s/n, 46022 Valencia, Spain

apalacios@dsic.upv.es

Abstract
Erlang systems have become an example of fault-tolerant systems.
Mainly, this fault-tolerance is achieved by following a simple strat-
egy: If a process is about to crash, just let it crash and then restart
it. Despite its simplicity, and without a proper design of the system
architecture, this strategy can often lead to an inconsistent system
state.

In this paper, we propose safe sessions, an automatic recovery
strategy for Erlang. In safe sessions, concurrent dependencies be-
tween processes are registered, so that the system can return to a
safe state (i.e., preserving causal consistency) in case of error.

1. Introduction
Erlang [1] is a concurrent language based on the actor model. Er-
lang programmers follow the Let It Crash philosophy, which dis-
courages excessive error handling in programs, and whose advice is
to let processes crash instead (and swiftly restart them after crash-
ing). This is possible by building a process supervision tree struc-
ture where, if a process crashes, its supervisor process is able to
detect it and restart the process.

However, the supervisor does not perform any kind of verifi-
cation and, as a result, messages (or even processes) could ap-
pear somewhere in the system when they were not expected to be
there—an inconsistent system state.

Recently, we introduced a reversible semantics [4] for Erlang,
where processes record all the information required to ensure
causal consistency [2] (i.e., an action may be undone only if ev-
ery action caused by that action has not been executed or has been
undone) when undoing some actions.

Due to the accuracy of this semantics, this information is contin-
uously increasing, ever since the creation of a process. Therefore,
the proposal from [4] is helpful to understand the problems in this
setting, but is unfeasible in practice because of the introduced over-
head.

As an alternative to [4], one could periodically store a snapshot
(checkpoint) of the entire system state, and return to the snapshot in
case of error. Again, this is not feasible in practice, since a system

[Copyright notice will appear here once ’preprint’ option is removed.]

could be composed of thousands (or even millions) of processes at
a given time.

Our proposal is a combination of both approaches. Here, the
snapshots are taken at the process level, but we trace the process
actions to ensure that we take the system back to a causally consis-
tent state.

2. The language
Erlang [1] is a functional and concurrent programming language
based on the actor model. In this model, each process has its lo-
cal memory, and processes communicate through message-passing.
Moreover, communication in Erlang is asynchronous (i.e., a pro-
cess continues its computation after sending a message), causing
the design of safe sessions to become more complicated.

In summary, the sequential part of Erlang is similar to most
functional languages, and the concurrent actions of a process are
the following:

• spawn: create a new process.
• send1: send a message to another process
• receive: suspend the execution of the process until a message

from the mailbox matches any of the clauses (the message is
consumed).

An example of Erlang computation can be seen in Figure 1,
where client, proxy and server are separate processes. Here, client
sends a request to proxy. After receiving the request, proxy forwards
this request to server. Then, server performs the request and returns
the result to proxy which, in turn, sends the result to client.

client proxy server
request

request

result

result

Figure 1. Example of computation in Erlang

Many things can go wrong in the example from Figure 1. For
example, any of the messages can be lost, or an exception can be
raised in any of the processes. Safe sessions can handle all kinds of
error in a generic way, resetting the processes and trying again.

1 In Erlang syntax: Pid !Msg. Here, Pid is the identifier of the destinatary
process.

Safe Sessions for Erlang 1 2017/4/7

3. Safe sessions
We propose safe sessions as an alternative to the Let It Crash
philosophy. Instead of letting a process to crash, we restore the
process state back to a previous state, and let the process continue
its execution from there.

To avoid storing too much information, we take a snapshot of
the process at the beginning of a safe session, and we discard it
once the session is finished. Hence, safe sessions are expected to
be carried out during the evaluation of small blocks of code and,
typically, these sessions will involve two or more processes that
collaborate on some task.

In order to determine the start and the end of a session, we add
the following construct to our language:

safetry expr end

We call this new construct a safe block. If the evaluation of expr
causes the process to crash, then the process should be restored with
the information available in the snapshot.

Additionally, and this is more challenging, the processes that
have been spawned or sent a message by this process (during the
evaluation of expr) should be restored as well. The same applies to
the processes spawned or sent a message by those processes, and
so forth. This way, we ensure that the system returns to a causally
consistent state.

Otherwise, if the evaluation of expr is successful, the snapshots
are discarded.

3.1 Safe computation
A sequential session—i.e., a session with no concurrent actions—
is the trivial case of a safe session. If an error occurs, replacing the
process state by the backup state is enough.

On a safe session with concurrent actions, restoring the backup
state is not enough to ensure causal consistency [2]. In order to
completely undo a process computation, we must also undo the
computation caused by its concurrent actions.

Essentially, we only need to focus on spawn and send actions
[4]. In our work, this is simplified by “propagating the safety” to
the child processes and the receiving processes.

3.2 Implementation
For safe sessions to work, each Erlang process must have an associ-
ated monitor that intercepts both incoming and outgoing messages.
Otherwise, it would not be possible to add any process to a safe
session before the reception of a message from a process that is
already in the session.

[[safetry expr end]]M → M ! 〈start session〉,
[[expr]]M ,

M ! 〈end session〉

[[spawn(. . .)]]M → M ! 〈spawn(. . .)〉,
receive 〈spawn with, P 〉 → P end

[[self()]]M → M

[[Pid ! expr]]M → M ! 〈send(Pid), [[expr]]M 〉,
receive 〈sent as, E〉 → E end

[[receive clauses end]]M → M ! 〈receive, clauses〉,
Arg = receive

〈rec msg,Msg〉 → Msg end,

case Arg of [[clauses]]M end

Figure 2. Program instrumentation of safe blocks

Monitors are expected to send signals between themselves to
propagate the safety from their monitored processes.

In order to enable the interaction of process with their monitors,
we must perform an instrumentation of the code within the safe
blocks. The auxiliary function [[]] executes this program instrumen-
tation as it is shown in Figure 2.

For simplicity, we only show here the instrumentation for con-
current expressions. Here, M is the identifier of the monitor pro-
cess, and the introduced variables (such as Arg) are supposed to be
fresh.

Basically, all concurrent actions are replaced by queries to the
monitor. For instance, if the process would spawn a new process,
it sends a message to the monitor so that the monitor spawns the
process (and its monitor) instead.

3.3 An example
Let us go back to our running example, and show how safe sessions
work in Figure 3. Here, client enters a safe block before sending the
request to proxy. When server receives the message from proxy, all
the processes are safe (backup states are indicated by horizontal
blue lines on the top).

In this case, the message from proxy to client is lost. When
the monitor of client detects this, it sends a signal to the monitor
of proxy (that will be propagated to server’s monitor) requesting
their monitored processes to recover (blue arrows, processes go
back to their backup state). Then, the monitor of client restores the
state of its monitored process. Now, the computation is resumed
before client sends the request to proxy, and the computation runs
as expected (i.e., as in Figure 1).

Finally, when client receives the reply from proxy and exits the
safe block, the backup states are dropped, and the session finishes.

client proxy server
request

request

result

result

Figure 3. Example of safe session in Erlang

4. Related Work
Our proposal has some similarities with the checkpoint-based ap-
proach from [3], although they aim at defining a new language,
rather than extending an existing one.

The aim of [5] is to prepare an interprocedural recovery strategy
based on session types which determines the processes that must be
restarted in case of error. Our proposal is more fine-grained, and it
would allow us to define an intraprocedural recovery strategy in
addition to the interprocedural one.

5. Conclusions and future work
In this paper, we have presented the basic aspects of an automatic
technique for recovery in Erlang systems, and we have shown how
it can be applied on a practical problem.

In the future, we will continue to refine our design of safe ses-
sions and develop an implementation. Later, the implementation
will be evaluated and compared against the aforementioned ap-
proaches.

This work is being developed in the context of COST Action
IC1405 on Reversible Computation - extending horizons of com-
puting.

Safe Sessions for Erlang 2 2017/4/7

References
[1] J. Armstrong, R. Virding, and M. Williams. Concurrent programming

in Erlang (2nd edition). Prentice Hall, 1996.
[2] V. Danos and J. Krivine. Reversible communicating systems. In Proc.

of CONCUR 2004, volume 3170 of LNCS, pages 292–307. Springer,
2004.

[3] J. Field and C. A. Varela. Transactors: a programming model for main-
taining globally consistent distributed state in unreliable environments.
In Proc. of POPL 2005, pages 195–208. ACM, 2005.

[4] N. Nishida, A. Palacios, and G. Vidal. Towards reversible
computation in erlang. CoRR, abs/1608.05521, 2016. URL
http://arxiv.org/abs/1608.05521.

[5] R. Neykova and N. Yoshida. Let it recover: Multiparty protocol-induced
recovery. In Proc. of CC 2017, pages 98–108, ACM, 2017.

Safe Sessions for Erlang 3 2017/4/7

