
Concolic Execution in Functional Programming by
Program Instrumentation

Adrián Palacios
(joint work with Germán Vidal)

Technical University of Valencia

25th Int’l Symposium on Logic-Based Program
Synthesis and Transformation

July 14, 2015

Siena, Italy

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 1 / 24

Introduction

Test-case generation (imperative programming)

Approaches for TC generation:

Random input data:

Extended use.
Poor coverage in general.

Symbolic execution:

Build a search tree with symbolic data.
Solve constraints in leaves to produce test cases.
Complex constraints should be simplified.

Concolic execution:

Compute a symbolic execution that mimics the concrete execution:
collect constraints c1, c2, . . . , cn
Solve ¬cn and produce new input data
Push values from concrete execution when constraints are too complex.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 2 / 24

Introduction

Test-case generation (imperative programming)

Approaches for TC generation:

Random input data:

Extended use.
Poor coverage in general.

Symbolic execution:

Build a search tree with symbolic data.
Solve constraints in leaves to produce test cases.
Complex constraints should be simplified.

Concolic execution:

Compute a symbolic execution that mimics the concrete execution:
collect constraints c1, c2, . . . , cn
Solve ¬cn and produce new input data
Push values from concrete execution when constraints are too complex.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 2 / 24

Introduction

Symbolic execution: simple example

void foo(int x , int y){
z = 2 ∗ y ;
if(x == z){

if(x > y + 10){
error;

}
}

}

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 3 / 24

Introduction

Symbolic execution: Complex example

void foo(int x , int y){
z = 2 ∗ y ;
if(x == z){

if(x ∗ x > y + 10){
error;

}
}

}

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 4 / 24

Introduction

Concolic execution: Example

void foo(int x , int y){
z = 2 ∗ y ;
if(x == z){

if(x ∗ x > y + 10){
error;

}
}

}

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 5 / 24

Introduction

Concolic execution (functional programming)

Few approaches to concolic testing for functional programming:

Preliminary approach to symbolic execution in Erlang [PSI’14]

CutEr, a new concolic testing tool for Erlang [PPDP’15]

Some approaches make use of an augmented interpreter to also deal with
symbolic values. This has some drawbacks:

There is a huge implementation effort.

It is difficult to maintain.

It does not scale up well.

We propose a novel approach based on instrumenting an (Erlang) program.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 6 / 24

The language

The language

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 7 / 24

The language

Erlang (main features)

Main features of Erlang:

Integration of functional and concurrent features.

Concurrency model based on message-passing

Dynamic typing.

Hot code loading.

These features make it appropiate for distributed, fault-tolerant
applications (Facebook, Twitter).

Because of its growing popularity, powerful testing and verification
techniques are required.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 8 / 24

The language

Erlang syntax

An Erlang program is a set of function definitions, with the form:

f (X1, . . . ,Xn) → s.

where the sentence s can be

an expression e (made of vars, atoms, functions, . . .)

a sequence of sentences s1, s2

a case statement case e of pat1 → s1; . . . ; patn → sn end

pattern matching pat = e

. . .

Erlang code is translated to Core Erlang, an intermediate language used by
the Erlang compiler. This language is appropiate for defining analysis and
transformation techniques.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 9 / 24

The language

From Erlang to Core Erlang

f(X ,Y) → g(X),
case h(X) of
a→ A = h(Y),

g(A);
b→ g(h([]))

end.

f/2 =
fun (X ,Y)→ do apply g/1 (X),

case apply h/1 (X) of
a→ let Z = apply h/1 (Y)

in apply g/1 (Z);
b→ let V = apply h/1 ([])

in apply g/1 (V);
W → fail

end.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 10 / 24

The language

Flat language

For our instrumentation to be correct, we need to make explicit the return
values from expressions. Thus, we require the following to be patterns:

The name and arguments of a function application.

The return value of a function.

The argument and return value of a case expression.

pgm ::= a/n = fun (X1, . . . ,Xn)→ let X = e in X . | pgm pgm

Exp 3 e ::= a | X | [] | [p1|p2] | {p1, . . . , pn}
| let p = e1 in e2 | do e1 e2
| let p = apply p0 (p1, . . . , pn) in e
| let p1 = case p2 of clauses end in e

clauses ::= p1 → e1; . . . ; pn → en

Pat 3 p ::= [p1|p2] | [] | {p1, . . . , pn} | a | X

Value 3 v ::= [v1|v2] | [] | {v1, . . . , vn} | a

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 11 / 24

The language

Flat language

For our instrumentation to be correct, we need to make explicit the return
values from expressions. Thus, we require the following to be patterns:

The name and arguments of a function application.

The return value of a function.

The argument and return value of a case expression.

pgm ::= a/n = fun (X1, . . . ,Xn)→ let X = e in X . | pgm pgm

Exp 3 e ::= a | X | [] | [p1|p2] | {p1, . . . , pn}
| let p = e1 in e2 | do e1 e2
| let p = apply p0 (p1, . . . , pn) in e
| let p1 = case p2 of clauses end in e

clauses ::= p1 → e1; . . . ; pn → en

Pat 3 p ::= [p1|p2] | [] | {p1, . . . , pn} | a | X

Value 3 v ::= [v1|v2] | [] | {v1, . . . , vn} | a

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 11 / 24

Instrumented Semantics

Instrumented Semantics

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 12 / 24

Instrumented Semantics

Events

Five types of events will be enough to reconstruct the symbolic execution:

call(params, vars, p, [p1, . . . , pn])

exit(params, vars, p)

bind(params, vars, p, p′)

case(params, vars, i , p0, pi , [(p0, 1, p1), . . . , (p0, n, pn)])

exitcase(params, vars, p, p′)

These events will give us static information about the execution of the
program.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 13 / 24

Instrumented Semantics

Instrumented semantics (notation)

Statements have the form:

π, θ ` e ⇓τ p

where:

π is the context.

θ is the environment.

e is an expression.

τ is a sequence of events.

p is a pattern.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 14 / 24

Instrumented Semantics

Instrumented semantics for ’apply’

〈vs, ps〉, θ ` p0 ⇓ε f/m . . . 〈vs, ps〉, θ ` pm ⇓ε p′m
〈[Ym], [bv(e2)]〉, θ ∪ σ ` e2 ⇓τ1 p′ 〈vs, ps〉, θ ∪ σ′ ` e ⇓τ2 p′′

〈vs, ps〉, θ ` let p = apply p0 (pm) in e ⇓call(vs,ps,p,[pm])+τ1+exit([Ym],[bv(e2)],p′′
2)+τ2

p′′

if f/m = fun (Ym)→ e2 ∈ pgm, ret(e2) = p′′2 ,
match(Ym, p′m) = σ, match(p, p′) = σ′

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 15 / 24

Instrumented Semantics

Example program

main/1 = fun (X)→ let W = apply app/2 (X ,X) in W

app/2 = fun (X ,Y)→ let W1 = case X of
[]→ Y
[H|T]→ let W2 = apply app/2 (T ,Y) in [H|W2]

end
in W1

Example computation with input [a]:

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 16 / 24

Instrumented Semantics

Associated sequence of events

call([X], [W],W , [X ,X])
case([X ,Y], [W1,W2], 2,X , [H|T], [(1,X , []), (2,X , [H|T])])
call([X ,Y], [W1,W2],W2, [T ,Y])
case([X ,Y], [W1,W2], 1,X , [], [(1,X , []), (2,X , [H|T])])
exitcase([X ,Y], [W1,W2],W1,Y)
exit([X ,Y], [W1,W2],W1)
exitcase([X ,Y], [W1,W2],W1, [H|W2])
exit([X ,Y], [W1,W2],W1)
exit([X], [W],W)

The computed sequence of static events allows us to reconstruct a
symbolic execution that follows the steps of the concrete execution that
generated the trace.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 17 / 24

Program Instrumentation

Program Instrumentation

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 18 / 24

Program Instrumentation

Transformation

We instrument the program by replacing each function definition:

f/k = fun (X1, . . . ,Xk)→ let X = e in X

with a new function definition of the form:

f/k = fun (X1, . . . ,Xk)→ [[let X = e in out(“bind(vs, bs,X , ret(e))”,

out(“exit(vs, bs,X)”,X))]]vs,bsF

Notice that:

Predefined function out/2 outputs its first argument and returns its
second argument.

We propagate values vs = [Xk] and bs = [bv(e)].

We also propagate a flag that determines if an exitcase event should
be generated.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 19 / 24

Program Instrumentation

Program instrumentation for ’apply’

[[let W = apply p0 (pn) in e]]vs,bsb = let W = out(“call(vs, bs,W , [p1, . . . , pn])”,
apply p/0 (p1, . . . , pn))

in [[e]]vs,bsb

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 20 / 24

Program Instrumentation

Instrumented program

main/2 = fun (X) → let W = out(“call([X], [W],W , [X ,X])”,
apply app/2 (X ,X))

in out(“exit([X], [W],W)”,W)

app/2 = fun (X ,Y) →
let W1 = case X of

[] → out(“case([X ,Y], [W1,W2,H,T], 1,X , [], alts)”,
out(“exitcase([X ,Y], [W1,W2,H,T],W1,Y)”,Y))

[H|T] → out(“case([X ,Y], [W1,W2,H,T], 2,X , [H|T], alts)”,
let W2 = out(“call([X ,Y], [W1,W2,H,T],W2, [T ,Y])”,

apply app/2 (T ,Y)))
in out(“exitcase([X ,Y], [W1,W2,H,T],W1, [H|W2])”,

[H|W2])
in out(“exit([X ,Y], [W1,W2,H,T],W1)”,W1)

where alts = [(1,X , []), (2,X , [H|T])].

The execution of this program should correspond to the one using the
instrumented semantics previously shown.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 21 / 24

Discussion

Conclusions

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 22 / 24

Discussion

Conclusions and future work

Our paper is the first approach to concolic execution by program
instrumentation for functional programming.

This approach is easier to maintain and scales up better
(execution is done using the standard environment).

In the near future, we will:

Develop a tool for concolic testing.

Design heuristics for this algorithm.

Improve implementation to make it fully automatic.

Handle concurrency.

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 23 / 24

Discussion

Thanks for your attention!

A Palacios (Valencia, Spain) Concolic Exec. by Program Instrumentation LOPSTR 2015 24 / 24

	Introduction
	The language
	Instrumented Semantics
	Program Instrumentation
	Concolic Testing
	Discussion

