
Causal-Consistent Replay Debugging
for Message Passing Programs?

Ivan Lanese1, Adrián Palacios2, and Germán Vidal2

1 Focus Team, University of Bologna/INRIA
ivan.lanese@gmail.com

2 MiST, DSIC, Universitat Politècnica de València
{apalacios, gvidal}@dsic.upv.es

Abstract. Debugging of concurrent systems is a tedious and error-prone
activity. A main issue is that there is no guarantee that a bug that
appears in the original computation is replayed inside the debugger. This
problem is usually tackled by so-called replay debugging, which allows
the user to record a program execution and replay it inside the debugger.
In this paper, we present a novel technique for replay debugging that
we call controlled causal-consistent replay. Controlled causal-consistent
replay allows the user to record a program execution and, in contrast to
traditional replay debuggers, to reproduce a visible misbehavior inside
the debugger including all and only its causes. In this way, the user is
not distracted by the actions of other, unrelated processes.

1 Introduction

Debugging is a main activity in software development. According to a 2014
study [24], the cost of debugging is $312 billions annually. Another recent study [2]
estimates that the time spent in debugging is 49.9% of the total programming
time. The situation is not likely to improve in the near future, given the in-
creasing demand of concurrent and distributed software. Indeed, distribution is
inherent in current computing platforms, such as the Internet or the Cloud, and
concurrency is a must to overcome the advent of the power wall [25]. Debugging
concurrent and distributed software is clearly more difficult than debugging se-
quential code [9]. Furthermore, misbehaviors may depend, e.g., on the execution
speed of the different processes, showing up only in some (sometimes rare) cases.

? This work has been partially supported by the EU (FEDER) and the Spanish
Ministerio de Ciencia, Innovación y Universidades/AEI (MICINN) under grant
TIN2016-76843-C4-1-R, by the Generalitat Valenciana under grants PROMETEO-
II/2015/013 (SmartLogic) and Prometeo/2019/098 (DeepTrust), and by the COST
Action IC1405 on Reversible Computation - extending horizons of computing. The
first author has been also partially supported by French ANR project DCore ANR-
18-CE25-0007. The second author has been also supported by the EU (FEDER)
and the Spanish Ayudas para contratos predoctorales para la formación de doctores
(MICINN) under FPI grant BES-2014-069749.

2 Ivan Lanese, Adrián Palacios, and Germán Vidal

A particularly unfortunate situation is when a program exhibits a misbehav-
ior in its usual execution environment, but it runs smoothly when re-executed
in the debugger. This problem is usually tackled by so-called replay debugging,
which allows the user to record a program execution and replay it inside the
debugger. However, in concurrent programs, part of the execution may not be
relevant: some processes may not have interacted with the one showing a mis-
behavior, or may have interacted with it only at the very beginning of their
execution, hence most of their execution is not relevant for the debugging ses-
sion. Having to replay all these behaviors is both time and resource consuming
as well as distracting for the user.

Our main contribution in this paper is a novel technique for replay debugging
that we call controlled causal-consistent replay. It extends the techniques in the
literature as follows: given a log of a (typically faulty) concurrent execution,
we do not replay exactly the same execution step by step (as traditional replay
debuggers), but we allow the user to select any action in the log (e.g., one showing
a misbehavior) and to replay the execution up to this action, including all and
only its causes. This allows one to focus on those processes where (s)he thinks
the bug(s) might be, disregarding the actual interleaving of processes. To the
best of our knowledge, the notion of controlled causal-consistent replay is new.

We fully formalize causal-consistent replay for (a subset of) a realistic func-
tional and concurrent programming language based on message-passing: Erlang.
Moreover, we prove relevant properties, e,g., that misbehaviors in the original
computation are always replayed, and that we guarantee minimal replay of ob-
servable behaviors. This is in contrast with most approaches to replay in the liter-
ature, that, beyond considering different languages, are either fully experimental
(like, e.g., [18,19,27,1]), or present limited theoretical results, as in [21,8,10].

Causal-consistent replay can be seen as the dual of causal-consistent rollback,
a technique for reversible computing which allows one to select an action in a
computation and undo it, including all and only its consequences. Indeed, the
two techniques integrate well, giving rise to a framework to explore back and
forward a given concurrent computation, always concentrating on the actions of
interest and avoiding unrelated actions. By lack of space, we will only present
causal-consistent replay in this paper. More details, including the integration
with causal-consistent rollback, proofs of technical results, and a description of
an implemented reversible replay debugger for Erlang [16] that follows the ideas
in this paper, can be found in an accompanying technical report [17]. While not
technically needed, printing the paper in color may help the understanding.

2 The Language

We present below the considered language: a first-order functional and concur-
rent language based on message passing that mainly follows the actor model.

Language Syntax. The syntax of the language is in Figure 1. A program is a
sequence of function definitions, where each function name f/n (atom/arity) has

Causal-Consistent Replay Debugging for Message Passing Programs 3

program ::= fun1 . . . funn fun ::= fname = fun (X1, . . . , Xn)→ expr
fname ::= Atom/Integer lit ::= Atom | Integer | Float | []
expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}

| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2 pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Fig. 1: Language syntax rules

an associated definition fun (X1, . . . , Xn) → e, where X1, . . . , Xn are (distinct)
fresh variables and are the only variables that may occur free in e. The body of
a function is an expression, which can include variables, literals, function names,
lists (using Prolog-like notation: [] is the empty list and [e1|e2] is a list with
head e1 and tail e2), tuples (denoted by {e1, . . . , en}),3 calls to built-in functions
(mainly arithmetic and relational operators), function applications, case expres-
sions, let bindings, receive expressions, spawn (for creating new processes), “!”
(for sending a message), and self. As is common practice, we assume that X is
a fresh variable in let X = expr1 in expr2.

In this language, we distinguish expressions, patterns, and values, ranged over
respectively by e, e′, e1, . . ., by pat, pat′, pat1, . . . and by v, v′, v1, In contrast
to expressions, patterns are built from variables, literals, lists, and tuples. Pat-
terns can only contain fresh variables. Finally, values are built from literals,
lists, and tuples. Atoms (i.e., constants with a name) are written in roman let-
ters, while variables start with an uppercase letter. A substitution θ is a mapping
from variables to expressions, and Dom(θ) is its domain. Substitutions are usu-
ally denoted by (finite) sets of bindings like, e.g., {X1 7→ v1, . . . , Xn 7→ vn}. The
identity substitution is denoted by id. Composition of substitutions is denoted
by juxtaposition, i.e., θθ′ denotes a substitution θ′′ such that θ′′(X) = θ′(θ(X))
for all X ∈ Var . Substitution application σ(e) is also denoted by eσ.

In a case expression “case e of pat1 when e1 → e′1; . . . ; patn when en →
e′n end”, we first evaluate e to a value, say v; then, we find (if it exists) the first
clause pati when ei → e′i such that v matches pati, i.e., such that there exists
a substitution σ for the variables of pati with v = patiσ, and eiσ (the guard)
reduces to true; then, the case expression reduces to e′iσ.

In our language, a running system is a pool of processes that can only in-
teract through message sending and receiving (i.e., there is no shared mem-
ory). Received messages are stored in the queues of processes until they are
consumed; namely, each process has one associated local (FIFO) queue. Each
process is uniquely identified by its pid (process identifier). Message sending is
asynchronous, while receive instructions block the execution of a process until
an appropriate message reaches its local queue (see below).

3 As in Erlang, the only data constructors in the language (besides literals) are the
predefined functions for lists and tuples.

4 Ivan Lanese, Adrián Palacios, and Germán Vidal

main/0 = fun ()→ let S = spawn(server/0, [])
in let P = spawn(proxy/0, []) in apply client/2 (P, S)

server/0 = fun ()→ receive
{C,N} → receive

M → let X = C ! call + (N,M) in apply server/0 ()
end;

E → error
end

proxy/0 = fun ()→ receive {T,M} → let W = T !M in apply proxy/0 () end

client/2 = fun (P, S)→ let X = P ! {S, {self(), 40}} in let Y = S ! 2 in receive N → N end

Fig. 2: A simple client/server program

In the paper, on denotes a sequence of syntactic objects o1, . . . , on.

We consider the following functions with side-effects: self, “!”, spawn, and
receive. The expression self() returns the pid of a process, while p ! v sends a
message v to the process with pid p, which will be eventually stored in p’s local
queue. New processes are spawned with a call of the form spawn(a/n, [vn]), so
that the new process begins with the evaluation of apply a/n (vn). Finally, an
expression “receive patn when en → e′n end” should find the first message v in
the process’ queue (if any) such that case v of patn when en → e′n end can be
reduced to some expression e′′; then, the receive expression evaluates to e′′, with
the side effect of deleting the message v from the process’ queue. If there is no
matching message, the process suspends until a matching message arrives.

Our language models a significant subset of Core Erlang [3], the intermediate
representation used during the compilation of Erlang programs. Therefore, our
developments can be directly applied to Erlang (as can be seen in the technical
report [17], where the development of a practical debugger is described).

Example 1. The program in Figure 2 implements a simple client/server scheme
with one server, one client and a proxy. The execution starts with a call to
function main/0. It spawns the server and the proxy and finally calls function
client/2. Both the server and the proxy then suspend waiting for messages. The
client makes two requests {C, 40} and 2, where C is the pid of client (obtained
using self()). The second request goes directly to the server, but the first one
is sent through the proxy (which simply resends the received messages), so the
client actually sends {S, {C, 40}}, where S is the pid of the server. Here, we
expect that the server first receives the message {C, 40} and, then, 2, thus send-
ing back 42 to the client C (and calling function server/0 again in an endless
recursion). If the first message does not have the right structure, the catch-all
clause “E → error” returns error and stops.

A High-Level Semantics. Now, we present an (asynchronous) operational
semantics for our language. Following [26], we introduce a global mailbox (there

Causal-Consistent Replay Debugging for Message Passing Programs 5

called “ether”) to guarantee that our semantics generates all admissible mes-
sage interleavings. In contrast to previous semantics [15,22,26], our semantics
abstracts away from processes’ queues. We will see in Section 2 that this de-
cision simplifies both the semantics and the notion of independence, while still
modeling the same potential computations (see the technical report [17]).

Definition 1 (process). A process is a configuration 〈p, θ, e〉, where p is its pid,
θ an environment (a substitution of values for variables), and e an expression.

In order to define a system (roughly, a pool of processes interacting through
message exchange), we first need the notion of global mailbox.

Definition 2 (global mailbox). We define a global mailbox, Γ , as a multiset
of triples of the form (sender pid, target pid,message). Given a global mailbox
Γ , we let Γ ∪{(p, p′, v)} denote a new mailbox also including the triple (p, p′, v),
where we use “ ∪” as multiset union.

In Erlang, the order of two messages sent directly from process p to process p′ is
kept if both are delivered; see [5, Section 10.8].4 To enforce such a constraint, we
could define a global mailbox as a collection of FIFO queues, one for each sender-
receiver pair. In this work, however, we keep Γ a multiset. This solution is both
simpler and more general since FIFO queues serve only to select those compu-
tations satisfying the constraint. Nevertheless, if our logging approach is applied
to a computation satisfying the above constraint, then our replay computation
will also satisfy it, thus replay does not introduce spurious computations.

Definition 3 (system). A system is a pair Γ ;Π, where Γ is a global mailbox
and Π is a pool of processes, denoted as 〈p1, θ1, e1〉 | · · · | 〈pn, θn, en〉; here “ |”
represents an associative and commutative operator. We often denote a system
as Γ ; 〈p, θ, e〉 |Π to point out that 〈p, θ, e〉 is an arbitrary process of the pool.

A system is initial if it has the form {}; 〈p, id, e〉, where {} is an empty global
mailbox, p is a pid, id is the identity substitution, and e is an expression.

Following the style in [22], the semantics of the language is defined in a modular
way, so that the labeled transition relations −→ and ↪→ model the evaluation of
expressions and the reduction of systems, respectively. Given an environment θ

and an expression e, we denote by θ, e
l−→ θ′, e′ a one-step reduction labeled with

l. The relation
l−→ follows a typical call-by-value semantics for side-effect free

expressions; for expressions with side-effects, we label the reduction with the in-
formation needed to perform the side-effects within the system rules of Figure 3.
We refer to the rules of Figure 3 as the logging semantics, since the relation is
labeled with some basic information used to log the steps of a computation (see
Section 3). For now, the reader can safely ignore these labels (actually, labels
will be omitted when irrelevant). The topics of this work are orthogonal to the
evaluation of expressions, thus we refer the reader to [17] for the formalization of

the rules of
l−→. Let us now briefly describe the interaction between the reduction

of expressions and the rules of the logging semantics:

4 Current implementations only guarantee this restriction within the same node.

6 Ivan Lanese, Adrián Palacios, and Germán Vidal

(Seq)
θ, e

τ−→ θ′, e′

Γ ; 〈p, θ, e〉 |Π ↪→p,seq Γ ; 〈p, θ′, e′〉 |Π

(Send)
θ, e

send(p′,v)−−−−−−→ θ′, e′ and ` is a fresh symbol

Γ ; 〈p, θ, e〉 |Π ↪→p,send(`) Γ ∪ {(p, p′, {v, `})}; 〈p, θ′, e′〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi, ei)

Γ ∪ {(p′, p, {v, `})}; 〈p, θ, e〉 |Π ↪→p,rec(`) Γ ; 〈p, θ′θi, e′{κ 7→ ei}〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ and p′ is a fresh pid

Γ ; 〈p, θ, e〉 |Π ↪→p,spawn(p′) Γ ; 〈p, θ′, e′{κ 7→ p′}〉 | 〈p′, id, apply a/n (vn)〉 |Π

(Self)
θ, e

self(κ)−−−−→ θ′, e′

Γ ; 〈p, θ, e〉 |Π ↪→p,self Γ ; 〈p, θ′, e′{κ 7→ p}〉 |Π

Fig. 3: Logging semantics

– A one-step reduction of an expression without side-effects is labeled with
τ . In this case, rule Seq in Fig. 3 is applied to update correspondingly the
environment and expression of the considered process.

– An expression p′ ! v is reduced to v, with label send(p′, v), so that rule Send
in Fig. 3 can add the triple (p, p′, {v, `}) to Γ (p is the process performing
the send). The message is tagged with some fresh (unique) identifier `. These
tags allow us to track messages and avoid confusion when several messages
have the same value (these tags are similar to the timestamps used in [21]).

– The remaining functions, receive, spawn and self, pose an additional prob-
lem: their value cannot be computed locally. Therefore, they are reduced to
a fresh distinguished symbol κ, which is then replaced by the appropriate
value in the system rules. In particular, a receive statement receive cln end is
reduced to κ with label rec(κ, cln). Then, rule Receive in Fig. 3 nondetermin-
istically checks if there exists a triple (p′, p, {v, `}) in the global mailbox that
matches some clause in cln; pattern matching is performed by the auxiliary
function matchrec. If the matching succeeds, it returns the pair (θi, ei) with
the matching substitution θi and the expression in the selected branch ei.
Finally, κ is bound to the expression ei within the derived expression e′.

– For a spawn, an expression spawn(a/n, [vn]) is also reduced to κ with label
spawn(κ, a/n, [vn]). Rule Spawn in Fig. 3 then adds a new process with a
fresh pid p′ initialized with an empty environment id and the application
apply a/n (v1, . . . , vn). Here, κ is bound to p′, the pid of the spawned process.

– Finally, the expression self() is reduced to κ with label self(κ) so that rule
Self in Fig. 3 can bind κ to the pid of the given process.

We often refer to reduction steps derived by the system rules as actions taken
by the chosen process.

Example 2. Let us consider the program of Example 1 and the initial system
{ }; 〈c, id, apply main/0 ()〉, where c is the pid of the process. A possible (faulty)

Causal-Consistent Replay Debugging for Message Passing Programs 7

{ }; 〈c, , apply main/0 ()〉
↪→ { }; 〈c, , let S = spawn(server/0, []) in . . .〉
↪→ { }; 〈c, , let P = spawn(proxy/0, []) in apply client/2 (P, s)〉 | 〈s, , apply server/0 ()〉
↪→ { }; 〈c, , apply client/2 (p, s)〉 | 〈s, , apply server/0 ()〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {self(), 40}} in . . .〉 | 〈s, , apply server/0 ()〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {c, 40}} in . . .〉 | 〈s, , apply server/0 ()〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {c, 40}} in . . .〉 | 〈s, , receive . . .〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {c, 40}} in . . .〉 | 〈s, , receive . . .〉 | 〈p, , receive . . .〉
↪→ {(c, p, {{s, {c, 40}}, `1})}; 〈c, , let Y = s ! 2 in . . .〉 | 〈s, , receive . . .〉 | 〈p, , receive . . .〉
↪→ {(c, p, {{s, {c, 40}}, `1}), (c, s, {2, `2})}; 〈c, , receive . . .〉 | 〈s, , receive . . .〉 | 〈p, , receive . . .〉
↪→ {(c, s, {2, `2})}; 〈c, , receive . . .〉 | 〈s, , receive . . .〉 | 〈p, , let W = s ! {c, 40} in . . .〉
↪→ {(c, s, {2, `2}), (p, s, {{c, 40}, `3})}; 〈c, , receive . . .〉 | 〈s, , receive . . .〉 | 〈p, , apply proxy/0 ()〉
↪→ {(p, s, {{c, 40}, `3})}; 〈c, , receive . . .〉 | 〈s, , error〉 | 〈p, , apply proxy/0 ()〉

Fig. 4: Faulty derivation with the client/server of Example 1

computation from this system is shown in Fig. 4 (the selected expression at each
step is underlined).5 Here, we ignore the labels of the relation ↪→. Moreover,
we skip the steps that just bind variables and we do not show the bindings of
variables but substitute them for their values for clarity.

Independence. In order to define a causal-consistent replay semantics we need
not only an interleaving semantics such as the one we just presented, but also
a notion of causality or, equivalently, the opposite notion of independence. To
this end, we use the labels of the logging semantics (see Figure 3). These labels
include the pid p of the process that performs the transition, the rule used to
derive it and, in some cases, some additional information: a message tag ` in
rules Send and Receive, and the pid p′ of the spawned process in rule Spawn.

Before formalizing the notion of independence, we need to introduce some
notation and terminology. Given systems s0, sn, we call s0 ↪→∗ sn, which is a
shorthand for s0 ↪→p1,r1 . . . ↪→pn,rn sn, n ≥ 0, a derivation. One-step deriva-
tions are simply called transitions. We use d, d′, d1, . . . to denote derivations
and t, t′, t1, . . . for transitions. Given a derivation d = (s1 ↪→∗ s2), we define
init(d) = s1.Two derivations, d1 and d2, are said coinitial if init(d1) = init(d2).

For simplicity, in the following, we consider derivations up to renaming of
bound variables. Under this assumption, the semantics is almost deterministic,
i.e., the main sources of non-determinism are the selection of a process p and of
the message to be retrieved by p in rule Receive. Choices of the fresh identifier
` for messages and of the pid p′ of new processes are also non-deterministic.

Note that each process can perform at most one transition for each label,
i.e., s ↪→p,r s1 and s ↪→p,r s2 trivially implies s1 = s2.

5 Roughly speaking, the problem comes from the fact that the messages reach the
server in the wrong order. Note that this faulty derivation is possible even by con-
sidering Erlang’s policy on the order of messages, since they follow a different path.

8 Ivan Lanese, Adrián Palacios, and Germán Vidal

We now instantiate to our setting the well-known happened-before relation [11],
and the related notion of independent transitions:6

Definition 4 (happened-before, independence). Given transitions t1 =
(s1 ↪→p1,r1 s′1) and t2 = (s2 ↪→p2,r2 s′2), we say that t1 happened before t2,
in symbols t1 ; t2, if one of the following conditions holds:

– they consider the same process, i.e., p1 = p2, and t1 comes before t2;
– t1 spawns a process p, i.e., r1 = spawn(p), and t2 is performed by process p,

i.e., p2 = p;
– t1 sends a message `, i.e., r1 = send(`), and t2 receives the same message `,

i.e., r2 = rec(`).

Furthermore, if t1 ; t2 and t2 ; t3, then t1 ; t3 (transitivity). Two transitions
t1 and t2 are independent if t1 6; t2 and t2 6; t1.

Switching consecutive independent transitions does not change the final state:

Lemma 1 (switching lemma). Let t1 = (s1 ↪→p1,r1 s2) and t2 = (s2 ↪→p2,r2

s3) be consecutive independent transitions. Then, there are two consecutive tran-
sitions t2〈〈t1 = (s1 ↪→p2,r2 s4) and t1〉〉t2 = (s4 ↪→p1,r1 s3) for some system s4.

The happened-before relation gives rise to an equivalence relation equating all
derivations that only differ in the switch of independent transitions. Formally,

Definition 5 (causally equivalent derivations). Let d1 and d2 be deriva-
tions under the logging semantics. We say that d1 and d2 are causally equiv-
alent, in symbols d1 ≈ d2, if d1 can be obtained from d2 by a finite number of
switches of pairs of consecutive independent transitions.

Causal equivalence is an instance of the trace equivalence in [20].

3 Logging Computations.

In this section, we introduce a notion of log for a computation. Basically, we
aim to analyze in a debugger a faulty behavior that occurs in some execution
of a program. To this end, we need to extract from an actual execution enough
information to replay it inside the debugger. Actually, we do not want to replay
necessarily the exact same execution, but a causally equivalent one. In this way,
the programmer can focus on some actions of a particular process, and actions of
other processes are only performed if needed (formally, if they happened-before
these actions). As we will see in the next section, this ensures that the considered
misbehaviors will still be replayed.

In a practical implementation (see the technical report [17]), one should in-
strument the program so that its execution in the actual environment produces

6 Here, we use the term independent, instead of concurrent as in [11], since the latter
has a slightly different meaning in the literature of causal-consistency.

Causal-Consistent Replay Debugging for Message Passing Programs 9

a collection of sequences of logged events (one sequence per process). In the fol-
lowing, though, we exploit the logging semantics and, in particular, part of the
information provided by the labels. The two approaches are equivalent, but the
chosen one allows us to formally prove a number of properties in a simpler way.

One could argue (as in, e.g., [21]) that logs should only store information
about the receive events, since this is the only nondeterministic action (once a
process is selected). However, this is not enough in our setting, where:

– We need to log the sending of a message since this is where messages are
tagged, and we need to know its (unique) identifier to be able to relate the
sending and receiving of each message.

– We also need to log the spawn events, since the generated pids are needed
to relate an action to the process that performed it (spawn events are not
considered in [21] and, thus, their set of processes is fixed).

We note that other nondeterministic events, such as input from the user or from
external services, should also be logged in order to correctly replay executions
involving them. One can deal with them by instrumenting the corresponding
primitives to log the input values, and then use these values when replaying the
execution. Essentially, they can be dealt with as the receive primitive. Hence, we
do not present them in detail to keep the presentation as simple as possible.

In the following, (ordered) sequences are denoted by w = (r1, r2, . . . , rn),
n ≥ 1, where () denotes the empty sequence. Concatenation is denoted by +.
We write r+w instead of (r)+w for simplicity.

Definition 6 (log). A log is a (finite) sequence of events (r1, r2, . . .) where
each ri is either spawn(p), send(`) or rec(`), with p a pid and ` a message iden-
tifier. Logs are ranged over by ω. Given a derivation d = (s0 ↪→p1,r1 s1 ↪→p2,r2

. . . ↪→pn,rn sn), n ≥ 0, under the logging semantics, the log of a pid p in d, in
symbols L(d, p), is inductively defined as follows:

L(d, p) =

 () if n = 0 or p does not occur in d
r1+L(s1 ↪→∗ sn, p) if n > 0, p1 = p, and r1 6∈ {seq, self}
L(s1 ↪→∗ sn, p) otherwise

The log of d, written L(d), is defined as: L(d) = {(p,L(d, p)) | p occurs in d}.
We sometimes call L(d) the global log of d to avoid confusion with L(d, p). Note
that L(d, p) = ω if (p, ω) ∈ L(d) and L(d, p) = () otherwise.

Example 3. Consider the derivation shown in Example 2, here referred to as d.
If we run it under the logging semantics, we get the following logs:

L(d, c) = (spawn(s), spawn(p), send(`1), send(`2))
L(d, s) = (rec(`2)) L(d,p) = (rec(`1), send(`3))

In the following we only consider finite derivations under the logging semantics.
This is reasonable in our context where the programmer wants to analyze in the
debugger a finite (possibly incomplete) execution showing a faulty behavior.

10 Ivan Lanese, Adrián Palacios, and Germán Vidal

An essential property of our semantics is that causally equivalent derivations
have the same log, i.e., the log depends only on the equivalence class, not on the
selection of the representative inside the class. The reverse implication, namely
that (coinitial) derivations with the same global log are causally equivalent, holds
provided that we establish the following convention on when to stop a derivation:

Definition 7 (fully-logged derivation). A derivation d is fully-logged if, for
each process p, its last transition s1 ↪→p,r s2 in d (if any) is a logged transition,
i.e., r 6∈ {seq, self}. In particular, if a process performs no logged transition, then
it performs no transition at all.

Restricting to fully-logged derivations is needed since only logged transitions
contribute to logs. Otherwise, two derivations d1 and d2 could produce the same
log, but differ simply because, e.g., d1 performs more non-logged transitions
than d2. Restricting to fully-logged derivations, we include the minimal amount
of transitions needed to produce the observed log.

Finally, we present a key result of our logging semantics. It states that two
derivations are causally equivalent iff they produce the same log.

Theorem 1. Let d1, d2 be coinitial fully-logged derivations. L(d1) = L(d2) iff
d1 ≈ d2.

4 A Causal-Consistent Replay Semantics

In this section, we introduce an uncontrolled replay semantics. It takes a program
and the log of a given derivation, and allows us to replay any causally equivalent
derivation. This semantics constitutes the kernel of our replay framework. The
term uncontrolled indicates that the semantics specifies how to perform replay,
but there is no policy to select the applicable rule when more than one is enabled.
The uncontrolled semantics is suitable to set the basis of our replay mechanism,
but does not allow one to focus on the causes of a given action. For this reason, in
Section 5, we build on top of this semantics a controlled one, where the selection
of actions is driven by the queries from the user.

In the following, we introduce a transition relation ⇀ to specify replay. Tran-
sition ⇀ is similar to the logging semantics ↪→ (Figure 3) but it is now driven
by the considered log. Thus, processes have the form 〈p, ω, θ, e〉, with ω a log.

The uncontrolled causal-consistent replay semantics is shown in Figure 5. For
technical reasons, labels of the replay semantics contain the same information as
the labels of the logging semantics. Moreover, the labels now also include a set of
replay requests. The reader can ignore these elements until the next section. For
simplicity, we also consider that the log L(d, p) of each process p in the original
derivation d is a fixed global parameter of the transition rules (see rule Spawn).

The rules for expressions are the same as in the logging semantics (an ad-
vantage of the modular design). The replay semantics is similar to the logging
semantics, except that logs fix some parameters: the fresh message identifier in
rule Send , the message received in rule Receive, and the fresh pid in rule Spawn.

Causal-Consistent Replay Debugging for Message Passing Programs 11

(Seq)
θ, e

τ−→ θ′, e′

Γ ; 〈p, ω, θ, e〉 |Π ⇀p,seq,{s} Γ ; 〈p, ω, θ′, e′〉 |Π

(Send)
θ, e

send(p′,v)−−−−−−→ θ′, e′

Γ ; 〈p, send(`)+ω, θ, e〉 |Π ⇀p,send(`),{s,`⇑} Γ ∪ {(p, p′, {v, `})}; 〈p, ω, θ′, e′〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi, ei)

Γ ∪ {(p′, p, {v, `})}〈p, rec(`)+ω, θ, e〉 |Π
⇀p,rec(`),{s,`⇓} Γ ; 〈p, ω, θ′θi, e′{κ 7→ ei}〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ and ω′ = L(d, p′)

Γ ; 〈p, spawn(p′)+ω, θ, e〉 |Π ⇀p,spawn(p′),{s,spp′} Γ ; 〈p, ω, θ′, e′{κ 7→ p′}〉
| 〈p′, ω′, id, apply a/n (vn)〉 |Π

(Self)
θ, e

self(κ)−−−−→ θ′, e′

Γ ; 〈p, ω, θ, e〉 |Π ⇀p,self,{s} Γ ; 〈p, ω, θ′, e′{κ 7→ p}〉 |Π

Fig. 5: Uncontrolled replay semantics

Example 4. Consider the logs of Example 3. Then, we have, e.g., the replay
derivation in Fig. 6. The actions performed by each process are the same as in
the original derivation in Example 2, but the interleavings are slightly different.
Moreover, after ten steps, the server is waiting for a message, the global mailbox
contains a matching message but, in contrast to the logging semantics, receive
cannot proceed since the message identifier in the log does not match (`2 vs `3).

Basic Properties of the Replay Semantics. Here, we show that the uncon-
trolled replay semantics is consistent and we relate it with the logging semantics.
We need the following auxiliary functions:

Definition 8. Let d = (s1 ↪→∗ s2) be a derivation under the logging semantics,
with s1 = Γ ; 〈p1, θ1, e1〉 | . . . | 〈pn, θn, en〉. The system corresponding to s1 in the
replay semantics is defined as follows:

addLog(L(d), s1) = Γ ; 〈p1,L(d, p1), θ1, e1〉 | . . . | 〈pn,L(d, pn), θn, en〉

Conversely, given a system s = Γ ; 〈p1, ω1, θ1, e1〉 | . . . | 〈pn, ωn, θn, en〉 in the
replay semantics, we let del(s) be the system obtained from s by removing logs,
i.e., del(s) = Γ ; 〈p1, θ1, e1〉 | . . . | 〈pn, θn, en〉, and similarly for derivations.

In the following, we extend the notions of log and coinitial derivations, as well
as function init, to replay derivations in the obvious way. Furthermore, we now
call a system s′ initial under the replay semantics if there exists a derivation d
under the logging semantics, and s′ = addLog(L(d), init(d)).

We extend the notion of fully-logged derivations to our replay semantics:

Definition 9 (fully-logged replay derivation). A derivation d under the
replay semantics is fully-logged if, for each process p, the log is empty and its
last transition (if any) is a logged transition.

12 Ivan Lanese, Adrián Palacios, and Germán Vidal

{ }; 〈c, (spawn(s), spawn(p), send(`1), send(`2)), , apply main/0 ()〉
⇀ { }; 〈c, (spawn(s), spawn(p), send(`1), send(`2)), , let S = spawn(server/0, []) in . . .〉
⇀ { }; 〈c, (spawn(p), send(`1), send(`2)), , let P = spawn(proxy/0, []) in

apply client/2 (P, s)〉 | 〈s, (rec(`2)), , apply server/0 ()〉
⇀ { }; 〈c, (spawn(p), send(`1), send(`2)), , let P = spawn(proxy/0, []) in

apply client/2 (P, s)〉 | 〈s, (rec(`2)), , receive . . .〉
⇀ { }; 〈c, (send(`1), send(`2)), , apply client/2 (p, s)〉

| 〈s, (rec(`2)), , receive . . .〉 | 〈p, (rec(`1), send(`3)), , apply proxy/0 ()〉
⇀ { }; 〈c, (send(`1), send(`2)), , let X = p ! {s, {self(), 40}} in . . .〉

| 〈s, (rec(`2)), , receive . . .〉 | 〈p, (rec(`1), send(`3)), , apply proxy/0 ()〉
⇀ { }; 〈c, (send(`1), send(`2)), , let X = p ! {s, {c, 40}} in . . .〉

| 〈s, (rec(`2)), , receive . . .〉 | 〈p, (rec(`1), send(`3)), , apply proxy/0 ()〉
⇀ {(c, p, {{s, {c, 40}}, `1})}; 〈c, (send(`2)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), , receive . . .〉

| 〈p, (rec(`1), send(`3)), , apply proxy/0 ()〉
⇀ {(c, p, {{s, {c, 40}}, `1})}; 〈c, (send(`2)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), , receive . . .〉

| 〈p, (rec(`1), send(`3)), , receive . . .〉
⇀ { }; 〈c, (send(`2)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), , receive . . .〉

| 〈p, (send(`3)), , let s ! {c, 40} in . . .〉
⇀ {(p, s, {{c, 40}, `3})}; 〈c, (send(`2)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), , receive . . .〉

| 〈p, (), , apply proxy/0 ()〉
⇀ {(p, s, {{c, 40}, `3}), (c, s, {2, `2})}; 〈c, (), , receive . . .〉 | 〈s, (rec(`2)), , receive . . .〉

| 〈p, (), , apply proxy/0 ()〉
⇀ {(p, s, {{c, 40}, `3})}; 〈c, (), , receive . . .〉 | 〈s, (), , error〉 | 〈p, (), , apply proxy/0 ()〉

Fig. 6: Uncontrolled replay derivation with the traces of Example 3

Note that, in addition to Definition 7, we now require that processes consume
all their logs.

We will only consider systems reachable from the execution of a program:

Definition 10 (reachable systems). A system s is reachable if there exists
an initial system s0 such that s0 ⇀

∗ s.

Since only reachable systems are of interest (non-reachable systems are ill-
formed), in the following we assume that all systems are reachable.

Now, we can tackle the problem of proving that our replay semantics pre-
serves causal equivalence, i.e., that the original and the replay derivations are
always causally equivalent.

Theorem 2. Let d be a fully-logged derivation under the logging semantics.
Let d′ be any finite fully-logged derivation under the replay semantics such that
init(d′) = addLog(L(d), init(d)). Then d ≈ del(d′).

Usefulness for Debugging. Now, we show that our replay semantics is indeed
useful as a basis for designing a debugging tool. In particular, we prove that a
(faulty) behavior occurs in the logged derivation iff any replay derivation also
exhibits the same faulty behavior, hence replay is correct and complete.

Causal-Consistent Replay Debugging for Message Passing Programs 13

In order to formalize such a result we need to fix the notion of faulty behavior
we are interested in. For us, a misbehavior is a wrong system, but since the
system is possibly distributed, we concentrate on misbehaviors visible from a
“local” observer. Given that our systems are composed of processes and messages
in the global mailbox, we consider that a (local) misbehavior is either a wrong
message in the global mailbox or a process with a wrong configuration.

Theorem 3 (Correctness and completeness). Let d be a fully-logged deriva-
tion under the logging semantics. Let d′ be any fully-logged derivation under the
uncontrolled replay semantics such that init(d′) = addLog(L(d), init(d)). Then:

1. there is a system Γ ;Π in d with a configuration 〈p, θ, e〉 in Π iff there is a
system Γ ′;Π ′ in d′ with a configuration 〈p, θ, e〉 in del(Γ ′;Π ′);

2. there is a system Γ ;Π in d with a message (p, p′, {v, `}) in Γ iff there is a
system Γ ′;Π ′ in d′ with a message (p, p′, {v, `}) in Γ ′.

The result above is very strong: it ensures that a misbehavior occurring in a
logged execution is replayed in any possible fully-logged derivation. This means
that any scheduling policy is fine for replay. Furthermore, this remains true
whatever actions the user takes: either the misbehavior is reached, or it remains
in any possible forward computation.

One may wonder whether more general notions of misbehavior make sense.
Above, we consider just “local” observations. One could ask for more than one
local observation to be replayed. By applying the result above to multiple ob-
servations we get that all of them will be replayed, but, if they concern different
processes or messages, we cannot ensure that they are replayed at the same time
or in the same order. For instance, in the derivation of Figure 4, process c sends
the message with identifier `2 before process p receives the message with iden-
tifier `1, while in the replay derivation of Figure 6 the two actions are executed
in the opposite order. Only a super user able to see the whole system at once
could see such a (mis)behavior, which are thus not relevant in our context.

5 Controlled Replay Semantics

In this section, we introduce a controlled version of the replay semantics. The
semantics in the previous section allows one to replay a given derivation and be
guaranteed to replay, sooner or later, any local misbehavior. In practice, though,
one normally knows in which process p the misbehavior appears, and thus (s)he
wants to focus on a process p or even on some of its actions. However, to correctly
replay these actions, one also needs to replay the actions that happened before
them. We present in Figure 7 a semantics where the user can specify which
actions (s)he wants to replay, and the semantics takes care of replaying them.
Replaying an action requires to replay all and only its causes. Notably, the bug
causing a misbehavior causes the action showing the misbehavior.

Here, given a system s, we want to start a replay until a particular action ψ is
performed on a given process p. We denote such a replay request with bbscc({p,ψ}).

14 Ivan Lanese, Adrián Palacios, and Germán Vidal

Γ ;Π ⇀p,r,Ψ ′ Γ ′;Π ′ ∧ ψ ∈ Ψ ′

bbΓ ;Πcc{p,ψ}+Ψ bbΓ ′;Π ′ccΨ
Γ ;Π ⇀p,r,Ψ ′ Γ ′;Π ′ ∧ ψ 6∈ Ψ ′

bbΓ ;Πcc{p,ψ}+Ψ bbΓ ′;Π ′cc{p,ψ}+Ψ

Γ ; 〈p, rec(`)+ω, θ, e〉 |Π 6⇀p,r,Ψ ′ ∧ sender(`) = p′

bbΓ ; 〈p, rec(`)+ω, θ, e〉 |Πcc{p,ψ}+Ψ bbΓ ; 〈p, rec(`)+ω, θ, e〉 |Πcc({p′,`⇑},{p,ψ})+Ψ

6 ∃p in Π ∧ parent(p) = p′

bbΓ ;Πcc{p,ψ}+Ψ bbΓ ;Πcc({p′,spp},{p,ψ})+Ψ

Fig. 7: Controlled replay semantics

In general, the subscript of bb cc is a stack of requests, where the first element is
the most recent one. In this paper, we consider the following replay requests:

– {p, s}: one step of process p (the extension to n steps is straightforward);
– {p, `⇑}: request for process p to send the message tagged with `;
– {p, `⇓}: request for process p to receive the message tagged with `;
– {p, spp′}: request for process p to spawn the process p′.

Variable creations as not valid targets for replay requests, since variable names
are not known before their creation (variable creations are not logged). The
requests above are satisfied when a corresponding uncontrolled transition is per-
formed. Indeed, the third element labeling the relations of the replay semantics
in Figure 5 is the set of requests satisfied in the corresponding step.

Let us explain the rules of the controlled replay semantics in Fig. 7. Here, we
assume that the computation always starts with a single request.

– If the desired process p can perform a step satisfying the request ψ on top
of the stack, we do it and remove the request from the stack (first rule).

– If the desired process p can perform a step, but it does not satisfy the request
ψ, we update the system but keep the request in the stack (second rule).

– If a step on the desired process p is not possible, then we track the depen-
dencies and add a new request on top of the stack. We have two rules: one
for adding a request to a process to send a message we want to receive and
another one to spawn the process we want to replay if it does not exist. Here,
we use the auxiliary functions sender and parent to identify, respectively, the
sender of a message and the parent of a process. Both functions sender and
parent are easily computable from the logs in L(d).

The relation can be seen as a controlled version of the uncontrolled replay se-
mantics in the sense that each derivation of the controlled semantics corresponds
to a derivation of the uncontrolled one, while the opposite is not generally true.
Notions for derivations and transitions are easily extended to controlled deriva-
tions. We also need a notion of projection from controlled systems to uncontrolled
systems: uctrl(bbΓ ;ΠccΨ) = Γ ;Π. The notion of projection trivially extends to
derivations.

Theorem 4 (Soundness). For each controlled derivation d, uctrl(d) is an un-
controlled derivation.

Causal-Consistent Replay Debugging for Message Passing Programs 15

While simple, this result allows one to recover many relevant properties from
the uncontrolled semantics. For instance, by using the controlled semantics, if
starting from a system s = addLog(L(d), init(d)) for some logging derivation d
we find a wrong message (p, p′, {v, `}), then we know that the same message
exists also in d (from Theorem 3).

Our controlled semantics is not only sound but also minimal: causal-consistent
replay redoes the minimal amount of actions needed to satisfy the replay request.

Here, we need to restrict the attention to requests that ask to replay transi-
tions which are in the future of the process.

Definition 11. A controlled system c = bbscc({p,ψ}) is well initialized iff there

are a derivation d under the logging semantics, a system s0 = addLog(L(d), init(d)),
an uncontrolled derivation s0 ⇀

∗ s, and an uncontrolled derivation from s sat-
isfying {p, ψ}.

The existence of a derivation satisfying the request can be efficiently checked.
For replay requests {p, s} it is enough to check that process p can perform a step,
for other replay requests it is enough to check the process log.

Theorem 5 (Minimality). Let d be a controlled derivation such as init(d) =
bbscc({p,ψ}) is well-initialized. Derivation uctrl(d) has minimal length among all

uncontrolled derivations d′ with init(d′) = s including at least one transition
satisfying the request {p, ψ}.

6 Related Work and Conclusion

In this work, we have introduced (controlled) causal-consistent replay. It is
strongly related (indeed dual) to the notion of causal-consistent reversibility,
and its instance on debugging, causal-consistent reversible debugging, introduced
in [6] for the toy language µOz. Beyond this, it has only been used so far in the
CauDEr [13,14] debugger for Erlang, which we took as a starting point for our
prototype implementation (see [17]). Causal-consistent rollback has also been
studied in the context of the process calculus HOπ [12] and the coordination
language Klaim [7]. We refer to [6] for a description of the relations between
causal-consistent debugging and other forms of reversible debugging.

The basic ideas in this paper are also applicable to other message-passing
languages and calculi. In principle, the approach could also be applied to shared
memory languages, yet it would require to log all interactions with shared mem-
ory (which may give rise, in principle, to an inefficient scheme).

An approach to record and replay for actor languages is introduced in [1].
While we concentrate on the theory, they focus on low-level issues: dealing with
I/O, producing compact logs, etc. Actually, we could consider some of the ideas in
[1] to produce more compact logs and thus reduce our instrumentation overhead.

At the semantic level, the work closest to ours is the reversible semantics
for Erlang in [15]. However, all our semantics abstract away local queues in
processes and their management. This makes the notion of independence much

16 Ivan Lanese, Adrián Palacios, and Germán Vidal

more natural, and it avoids some spurious conflicts between deliveries of different
messages present in [15]. Moreover, our replay semantics is driven by the log of
an actual execution, while the one in [15] is not. Finally, our controlled semantics,
built on top of the uncontrolled reversible semantics, is much simpler than the
low-level controlled semantics in [15] which, anyway, is based on undoing the
actions of an execution up to a given checkpoint (rollback requests appeared
later, in [13]).

None of the works above treats causal-consistent replay and, as far as we
know, such notion has never been explored. For instance, no reference to it
appears in a recent survey [4]. The survey classifies our approach as a message-
passing multi-processor scheme (the approach is studied in a single-processor
multi-process setting, but it makes no use of the single-processor assumption).
It is in between content-based schemes (that record the content of the messages)
and ordering-based schemes (that record the source of the messages), since it
registers just unique identifiers for messages. This reduces the size of the log
(content of long messages is not stored) w.r.t. content-based schemes, yet differ-
ently from ordering-based schemes it does not necessarily require to replay the
system from a global checkpoint (but we do not yet consider checkpoints).

A related ordering-based scheme is [21]: it uses race detection to avoid logging
all message exchanges, and we may try to integrate it in our approach in the
future (though it considers only systems with a fixed number of processes). A
content-based work is [19] for MPI programs, which does not replay calls to MPI
functions, but just takes the values from the log. By applying this approach in
our case, the state of Γ would not be replayed, and causal-consistent replay
would not be possible since no relation between send and receive is kept.

Our work is also related to slicing, and in particular to [23], since it also
deals with concurrent systems. Both approaches are based on causal consis-
tency, but slicing considers the whole computation and extracts the fragment
of it needed to explain a visible behavior, while we instrument the computation
so to be able to go back and forward. Other differences include the considered
languages—pi calculus vs Erlang—, the style of the semantics—labelled transi-
tions vs reductions—, etc.

References

1. Aumayr, D., Marr, S., Béra, C., Boix, E.G., Mössenböck, H.: Efficient and de-
terministic record & replay for actor languages. In: Tilevich, E., Mössenböck, H.
(eds.) Proceedings of the 15th International Conference on Managed Languages &
Runtimes (ManLang 2018). pp. 15:1–15:14. ACM (2018)

2. Britton, T., Jeng, L., Carver, G., Cheak, P., Katzenellenbogen, T.: Reversible de-
bugging software – quantify the time and cost saved using reversible debuggers.
http://www.roguewave.com (2012)

3. Carlsson, R., Gustavsson, B., Johansson, E., Lindgren, T., Nyström, S.O., Pet-
tersson, M., Virding, R.: Core Erlang 1.0.3. Language specification (2004), avail-
able from URL: https://www.it.uu.se/research/group/hipe/cerl/doc/core_

erlang-1.0.3.pdf

https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf

Causal-Consistent Replay Debugging for Message Passing Programs 17

4. Chen, Y., Zhang, S., Guo, Q., Li, L., Wu, R., Chen, T.: Deterministic replay: A
survey. ACM Comput. Surv. 48(2), 17:1–17:47 (2015)

5. Frequently Asked Questions about Erlang. Available at http://erlang.org/faq/
academic.html (2018)

6. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) Proceedings of the 17th International Conference on
Fundamental Approaches to Software Engineering (FASE 2014). Lecture Notes in
Computer Science, vol. 8411, pp. 370–384. Springer (2014)

7. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in a
tuple-based language. J. Log. Algebr. Meth. Program. 88, 99–120 (2017)

8. Huang, J., Liu, P., Zhang, C.: LEAP: lightweight deterministic multi-processor
replay of concurrent java programs. In: Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2010, Santa Fe,
NM, USA, November 7-11, 2010. pp. 385–386. ACM (2010)

9. Huang, J., Zhang, C.: Debugging concurrent software: Advances and challenges. J.
Comput. Sci. Technol. 31(5), 861–868 (2016)

10. Jiang, Y., Gu, T., Xu, C., Ma, X., Lu, J.: CARE: cache guided deterministic
replay for concurrent java programs. In: 36th International Conference on Software
Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014. pp. 457–467.
ACM (2014)

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

12. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.: Controlling reversibility in
higher-order pi. In: Katoen, J., König, B. (eds.) Proceedings of the 22nd Inter-
national Conference on Concurrency Theory (CONCUR 2011). Lecture Notes in
Computer Science, vol. 6901, pp. 297–311. Springer (2011)

13. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: A Causal-Consistent Re-
versible Debugger for Erlang (system description). In: Gallagher, J.P., Sulzmann,
M. (eds.) Proceedings of the 14th International Symposium on Functional and
Logic Programming (FLOPS’18). Lecture Notes in Computer Science, vol. 10818,
pp. 247–263. Springer (2018)

14. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr website. URL: https:

//github.com/mistupv/cauder (2018)
15. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.

Journal of Logical and Algebraic Methods in Programming 100, 71–97 (2018)
16. Lanese, I., Palacios, A., Vidal, G.: CauDEr, Causal-consistent Reversible Re-

play Debugger. Logger: https://github.com/mistupv/tracer, debugger: https:
//github.com/mistupv/cauder/tree/replay

17. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay debugging for message
passing programs. Tech. rep., DSIC, Universitat Politècnica de València (2019),
http://personales.upv.es/gvidal/german/forte19tr/paper.pdf

18. LeBlanc, T.J., Mellor-Crummey, J.M.: Debugging parallel programs with instant
replay. IEEE Trans. Computers 36(4), 471–482 (1987)

19. Maruyama, M., Tsumura, T., Nakashima, H.: Parallel program debugging based
on data-replay. In: Zheng, S.Q. (ed.) Proceedings of the IASTED International
Conference on Parallel and Distributed Computing and Systems (PDCS 2005).
pp. 151–156. IASTED/ACTA Press (2005)

20. Mazurkiewicz, A.W.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part
II, Proceedings of an Advanced Course, 1986. Lecture Notes in Computer Science,
vol. 255, pp. 279–324. Springer (1987)

http://erlang.org/faq/academic.html
http://erlang.org/faq/academic.html
https://github.com/mistupv/cauder
https://github.com/mistupv/cauder
https://github.com/mistupv/tracer
https://github.com/mistupv/cauder/tree/replay
https://github.com/mistupv/cauder/tree/replay
http://personales.upv.es/gvidal/german/forte19tr/paper.pdf

18 Ivan Lanese, Adrián Palacios, and Germán Vidal

21. Netzer, R.H., Miller, B.P.: Optimal tracing and replay for debugging message-
passing parallel programs. The Journal of Supercomputing 8(4), 371–388 (1995)

22. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M., López-Garćıa, P. (eds.) Proceedings of the 26th International
Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR
2016). Lecture Notes in Computer Science, vol. 10184, pp. 259–274. Springer (2017)

23. Perera, R., Garg, D., Cheney, J.: Causally consistent dynamic slicing. In: Deshar-
nais, J., Jagadeesan, R. (eds.) CONCUR. LIPIcs, vol. 59, pp. 18:1–18:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

24. Software, U.: Increasing software development productivity with re-
versible debugging (2014), https://undo.io/media/uploads/files/Undo_

ReversibleDebugging_Whitepaper.pdf

25. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobbs Journal 30(3) (2005)

26. Svensson, H., Fredlund, L.A., Earle, C.B.: A unified semantics for future Erlang.
In: 9th ACM SIGPLAN workshop on Erlang. pp. 23–32. ACM (2010)

27. Veeraraghavan, K., Lee, D., Wester, B., Ouyang, J., Chen, P.M., Flinn, J.,
Narayanasamy, S.: Doubleplay: Parallelizing sequential logging and replay. ACM
Trans. Comput. Syst. 30(1), 3:1–3:24 (2012)

https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf
https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf

	Causal-Consistent Replay Debugging for Message Passing Programs

